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Preparation: causal inference model (1)

Model in which Y (h) (∈ R) is observed if h-th treatment is assigned (1 ≤ h ≤ H):

Y ≡
H∑

h=1

T (h)Y (h) =

H∑
h=1

T (h)
{
µ(h)(X) + f(X) + ϵ(h)

}

T (h) (
∑H

h=1 T
(h) = 1) is assignment variable that is 1 if h-th treatment is

assigned and 0 otherwise, X (∈ Rp) is confounding variable vector,
f : Rp → R is nonlinear function, ϵ(h) (∼ N(0, σ2)) is unobservable variable

Y is observable outcome variable (Y (h) is potential outcome variable)

(c(1), . . . , c(H))′ is a contrast with
∑H

h=1 c
(h) = 0, and our estimand is CATE

(conditional average treatment effect)
∑H

h=1 c
(h)µ(h)(x) for X = x

Naively estimating by e.g. least squares method will lead to bias
The propensity score method is a standard one that does not yield such a bias
by not estimating f(X), which is difficult to model
Selective inference in this setting is also treated by Zhang et al. (’22 JRSSB),
but it is eventually based on nonparametric estimation of f(X)
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Preparation: causal inference model (2)

Notation: subscript i is put on variables of i-th sample

Letting Ỹ = (Y1, . . . , Yn)
′, T̃ (h) = diag(T

(h)
1 , . . . , T

(h)
n ),

Ỹ (h) = (Y
(h)
1 , . . . , Y

(h)
n )′, X̃ = (X1, . . . ,Xn)

′，
µ̃(h)(X̃) = (µ(h)(X1), . . . , µ

(h)(Xn))
′, f̃(X̃) = (f(X1), . . . , f(Xn))

′ and

ϵ̃(h) = (ϵ
(h)
1 , . . . , ϵ

(h)
n )′, the model is expressed as

Ỹ =
H∑

h=1

T̃ (h)Ỹ (h) =
H∑

h=1

T̃ (h)
{
µ̃(h)(X̃) + f̃(X̃) + ϵ̃(h)

}
Assumptions:

Weak ignorability: ∀h = {1, 2, . . . , H}, Y
(h)
i ⊥⊥T

(h)
i | Xi

Positivity: 0 < P(T
(h)
i = 1 | Xi) < 1

Independency: if i ̸= j, (T
(h)
i ,Xi, ϵ

(h)
i )⊥⊥(T

(h)
j ,Xj , ϵ

(h)
j )
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Preparation: propensity score analysis

IPW estimation using propensity score e(h)(Xi) ≡ P(T
(h)
i = 1 | Xi):

Missing values are pseudo-recovered by multiplying observed values by the
inverse of the propensity score as weights; then usual estimation is conducted

Letting W̃ (h)(T̃ (h), X̃) ≡ diag{T (h)
1 /e(h)(X1), . . . , T

(h)
n /e(h)(Xn)} and

T̃ = (T̃ (1), . . . , T̃ (H)), and defining W̃ (T̃ , X̃) ≡
∑H

h=1 c
(h)W̃ (h)(T̃ (h), X̃)

as weight matrix, IPW (inverse probability weighted) estimator is given by
minimizing the following weighted squared loss∥∥∥∥∥W̃ (T̃ , X̃)Ỹ −

H∑
h=1

c(h)µ̃(h)(X̃)

∥∥∥∥∥
2

2

It has consistency under assumptions such as weak ignorability
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Preparation: selective inference (1)

Explanation using non-causal model:

Superscript (h) is omitted as H = 1 (i.e. T̃ is n× n identity matrix In), let
X̃ be a non-random matrix x̃, and let f̃(x̃) be n-dimensional zero vector 0n

After variable selection, to measure the extent to which the selected variables
have an impact on causal effect, tests are performed or confidence intervals
are constructed; however, p-values used in this process are no longer reliable

It is because the selected variables are likely to be significant, or in other
words, the model using the selected variables likely overfits the data

A linear function of x̃ is supposed as a model for µ̃(x̃); then, for each subset
M ⊂ {1, . . . , p}, we consider estimand as follows:

β‡M ≡ argmin
b‡M

E

(∥∥∥Ỹ − x̃Mb‡M
∥∥∥2
2

)
= (x̃′

M x̃M )
−1

x̃′
M µ̃(x̃)

x̃M = (x̃ij)i∈{1,...,n},j∈M

If models M1 and M2 are different, then β‡M1

j and β‡M2

j are generally
different, i.e., the target of inference is different for each model selected;
inference after model selection has some ambiguity
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Preparation: selective inference (2)

Two methods resolving the ambiguity in confidence interval construction:

Simultaneous inference is a method of creating an interval in which all the
regression coefficients are included with probability ≥ 1− α regardless of
which model is selected

Selective inference is a method of creating an interval in which the regression
coefficients in the selected model are included with probability ≥ 1− α under
the condition that the model was selected; it is C‡M

j (j ∈ M) such that

P
(
β‡M
j ∈ C‡M

j | M̂ = M
)
≥ 1− α (M̂ is selected model)

After Lee & Taylor (’14 NeurIPS) and Lee et al. (’16 AS) presented beautiful
inferences for marginal screening and LASSO, and Taylor & Tibshirani (’15
PNAS) explained its great potential, selective inference is rapidly developed

Here we develop it for propensity score analysis based on Lee et al. (’16 AS)
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Preparation: method in Lee et al. (’16 AS)

Selective inference in non-causal model:

Let us denote usual LASSO estimator by β̂‡ = (β̂‡
1, . . . , β̂

‡
p)

′, the collection of

non-zero estimators by β̂‡M̂ , and its sign by ŝ‡M̂ = sign(β̂‡M̂ ); from
Karuch-Kuhn-Tucker conditions, there exists an n× n matrix A(M , s) and
an n dimensional vector b(M , s) such that

∀s ∈ {−1, 1}|M |,
{
M̂ ‡ = M , ŝ‡M̂ = s

}
=

{
A(M , s)Ỹ ≤ b(M , s)

}
Using a unit vector ej (∈ R|M |), we define η̃‡

j ≡ x̃M (x̃′
M x̃M )−1ej ; since

the target parameter can be written as β‡M
j = η̃‡

j
′µ̃(x̃), we use η̃‡

j
′Ỹ to

create its confidence interval and obtain the following polyhedral lemma:

F
[V−

s,j(Z̃),V+
s,j(Z̃)]

β‡M
j ,σ2η̃‡

j
′η̃‡

j

(
η̃‡
j
′Ỹ

) ∣∣∣ {
A(M , s)Ỹ ≤ b(M , s)

}
∼ Unif(0, 1)

F
[a,b]

µ,σ2 denotes the c.d.f. of N(µ, σ2) truncated into [a, b], c‡j ≡ η̃‡
j (η̃

‡
j
′η̃‡

j )
−1,

V−
s,j(Z̃) = max

k:(A(M ,s)c
‡
j )k<0

{b(M , s)k − (A(M , s)Z̃)k}/(A(M , s)c‡j)k,

V+
s,j(Z̃) = min

k:(A(M ,s)c
‡
j )k>0

{b(M , s)k − (A(M , s)Z̃)k}/(A(M , s)c‡j)k,

Z̃ = {In − c‡j η̃
‡
j
′}Ỹ , Unif(0, 1) denotes uniform distribution on [0, 1]

Y. Ninomiya (Institute of Statistical Mathematics) Selective Inference in Propensity Score Analysis December 12th, 2023 7 / 20



Our purpose

Selective inference in causal inference model:

As a model for µ̃(h)(X̃), we consider linear sum of X̃M (confounding
variables belonging to M ⊂ {1, . . . , p}), and because the causal effect is∑H

h=1 c
(h)µ(h)(X), we define an estimand as

βM ≡ argmin
bM

E

∥∥∥∥∥
H∑

h=1

c(h)Ỹ (h) − X̃MbM

∥∥∥∥∥
2

2

∣∣∣∣∣∣ X̃


=
(
X̃MX̃ ′

M

)−1

X̃M

H∑
h=1

c(h)µ(h)(X̃)

Denoting the selected model as M̂ , we try to find CM
j (j ∈ M) such that

P
(
βM
j ∈ CM

j

∣∣∣ M̂ = M
)
≥ 1− α

We have βM
j = e′j(X̃MX̃ ′

M )−1X̃M

∑H
h=1 c

(h)µ(h)(X̃) using an appropriate

unit vector ej (∈ R|M |); then defining η̃j ≡ X̃M (X̃ ′
MX̃M )−1ej , later we

consider the conditional distribution of η̃′
jW̃ (T̃ , X̃)Ỹ
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Our model selection method

LASSO for causal inference model:

Considering that µ̃(h)(X̃) and then
∑H

h=1 c
(h)µ̃(h)(X̃) are linear functions

of X̃ in our model, we propose the following:

β̂ = argmin
β

{∥∥∥W̃ (
T̃ , X̃

)
Ỹ − X̃β

∥∥∥2
2
+ λ ∥β∥1

}
Let us denote M̂ = {j : β̂j ̸= 0}, β̂M̂ = (β̂j)j∈M̂ and ŝM̂ = sign(β̂M̂ );

for any model M (⊂ {1, . . . , p}) and any sign s (∈ {−1, 1}|M |), there exist
n× n matrix A(M , s) and n dimensional vector b(M , s) such that{

M̂ = M , ŝM̂ = s
}
=

{
A(M , s)W̃

(
T̃ , X̃

)
Ỹ ≤ b(M , s)

}
from Karuch-Kuhn-Tucker conditions
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The first main theorem

Problem unique to selective inference for causal model and its resolution:

Unlike Lee et al. (’16 AS), Ỹ is not Gaussian and f̃(X̃) exists; also, X̃ is
random, although it is a trivial difference

Since this is conditional inference, we can in fact further condition T̃ = t̃ and
X̃ = x̃ to obtain Polyhedral Lemma (this should be a key point)

It is unusual to initially condition T̃ = t̃ in propensity score analyses

Theorem 1 (Causal inference model version of non-asymptotic Polyhedral Lemma)

Under notation on the next page, the conditional distribution below is Unif(0, 1)

F
[V−

s,j(Z̃,T̃ ,X̃),V+
s,j(Z̃,T̃ ,X̃)]

κM
j (T̃ ,X̃),ζM

j (T̃ ,X̃)

(
η̃′
jW̃

(
T̃ , X̃

)
Ỹ
) ∣∣∣ A(M , s)W̃

(
T̃ , X̃

)
Ỹ ≤ b(M , s)
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Detailed notation

F
[a,b]
µ,σ2 is the c.d.f. of N(µ, σ2) truncated to the interval [a, b], XM = (Xj)j∈M

D̃(T̃ , X̃) ≡ W̃ (T̃ , X̃)2η̃j{η̃′
jW̃ (T̃ , X̃)2η̃j}−1

Z̃ ≡ {In − D̃(T̃ , X̃)η̃′
j}W̃ (T̃ , X̃)Ỹ

V−
s,j(Z̃, T̃ , X̃) ≡ max

k:(A(M ,s)D̃(T̃ ,X̃))k<0

b(M , s)k − (A(M , s)Z̃)k

(A(M , s)D̃(T̃ , X̃))k

V+
s,j(Z̃, T̃ , X̃) ≡ min

k:(A(M ,s)D̃(T̃ ,X̃))k>0

b(M , s)k − (A(M , s)Z̃)k

(A(M , s)D̃(T̃ , X̃))k

κM
j (T̃ , X̃) ≡ e′j(X̃

′
MX̃M )−1X̃ ′

M

H∑
h=1

c(h)W̃ (h)(T̃ (h), X̃){µ̃(h)(X̃) + f̃(X̃)}

ζMj (T̃ , X̃) ≡ σ2e′j(X̃
′
MX̃M )−1X̃ ′

MW̃ (T̃ , X̃)2X̃M (X̃ ′
MX̃M )−1ej

τMj (Ỹ †, T̃ , X̃) ≡ e′j(X̃
′
MX̃M )−1X̃ ′

M

H∑
h=1

c(h){W̃ (h)(T̃ (h), X̃)− In}Ỹ (h)†

ρMj

(
T̃ , X̃

)
≡ ζMj

(
T̃ , X̃

)
+ η̃′

j

H∑
h=1

c(h)2diag

{
σ2

|N (h)
i |

1− e(h)(Xi)

e(h)(Xi)

}
η̃j
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The second main theorem

Problem of non-asymptotic Polyhedral Lemma and its resolution:

Theorem 1 cannot be used for the inference about βM
j without further

consideration, because βM
j does not appear explicitly in the pivot statistic;

we consider higher-order asymptotics and extract βM
j from κM

j (T̃ , X̃)

From calculations frequently used under ignorability condition and the fact
that the sum of contrasts

∑H
h=1 c

(h) is 0, we obtain the following

Theorem 2 (Causal inference model version of asymptotic Polyhedral Lemma)

If Ỹ (h)† − {µ̃(h)(X̃) + f̃(X̃)} = oP(1) under the condition, the conditional
distribution below is Unif(0, 1) asymptotically (Ỹ † = (Ỹ (1)†, . . . , Ỹ (H)†))

F
[V−

s,j(Z̃,T̃ ,X̃),V+
s,j(Z̃,T̃ ,X̃)]

βM
j +τM

j (Ỹ †,T̃ ,X̃),ζM
j (T̃ ,X̃)

(
η̃′
jW̃

(
T̃ , X̃

)
Ỹ
) ∣∣∣A(M , s)W̃

(
T̃ , X̃

)
Ỹ ≤ b(M , s)

Note that τMj (Ỹ †, T̃ , X̃)
p→ 0, but this higher order correction is necessary
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Automatic development and accecible form

Development for increasing power using a union of intervals:

Similarly to Lee et al. (’16 AS), if we want to condition M̂ = M , we have
only to use N(µ, σ2) truncated into S ≡

⋃
s[V

−
s,j(Z̃, T̃ , X̃),V+

s,j(Z̃, T̃ , X̃)];

denoting the c.d.f. by FS
µ,σ2 , we obtain{

F
∪

s[V
−
s,j(Z̃,T̃ ,X̃),V+

s,j(Z̃,T̃ ,X̃)]

βM
j +τM

j (Ỹ †,T̃ ,X̃),ζM
j (T̃ ,X̃)

(
η̃′
jW̃

(
T̃ , X̃

)
Ỹ
) ∣∣∣ M̂ = M

}
d→ Unif(0, 1)

Form of confidence interval:

Since this pivot statistic is a monotonically decreasing function with respect
to βM

j , if we set L or U to satisfy

F
∪

s[V
−
s,j(Z̃,T̃ ,X̃),V+

s,j(Z̃,T̃ ,X̃)]

L or U+τM
j (Ỹ †,T̃ ,X̃),ζM

j (T̃ ,X̃)

(
η̃′
jW̃

(
T̃ , X̃

)
Ỹ
)
= 1− α

2
or

α

2
,

we get an asymptotically guaranteed conditional coverage as follows:

P
(
βM
j ∈ [L,U ]

∣∣∣ M̂ = M
)
→ 1− α
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Corollary

Asymptotics a little faster than usual:
We skipped to define Ỹ † because of needless tedium, but we can define it
appropriately and obtain the followings from ignorability conditions

E
{
η̃′
jW̃

(
T̃ , X̃

)
Ỹ − τMj

(
Ỹ †, T̃ , X̃

) ∣∣∣ T̃ , X̃
}
= βM

j + oP(n
−5/6)

V
{
η̃′
jW̃

(
T̃ , X̃

)
Ỹ − τMj

(
Ỹ †, T̃ , X̃

) ∣∣∣ T̃ , X̃
}
= ρMj

(
T̃ , X̃

)
+ oP(n

−5/3)

Corollary (Asymptotic control of false coverage rate)

Under notation on page 12, if we set LM̂
j and UM̂

j to satisfy

F
∪

s[V
−
s,j(Z̃,T̃ ,X̃),V+

s,j(Z̃,T̃ ,X̃)]

LM̂
j +τM̂

j (Ỹ †,T̃ ,X̃),ρM̂
j (T̃ ,X̃)

(
η̃′
jW̃

(
T̃ , X̃

)
Ỹ
)
= 1− α

2

and F
∪

s[V
−
s,j(Z̃,T̃ ,X̃),V+

s,j(Z̃,T̃ ,X̃)]

UM̂
j +τM̂

j (Ỹ †,T̃ ,X̃),ρM̂
j (T̃ ,X̃)

(
η̃′
jW̃

(
T̃ , X̃

)
Ỹ
)
=

α

2
,

we can control asymptotically the false coverage rate as follows:

lim
n→∞

E
(
|{j ∈ M̂ : βM̂

j /∈ [LM̂
j , UM̂

j ]}|/|M̂ |; |M̂ | > 0
)
≤ α
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Simulation study: Evaluation of coverages

Comparison between SI (selective inference) and Na (naive inference)
f : 0 or L (linear) or nL (non-linear), µ: linear, e: logistic

X: discrete or continuous, n: 1000, p: 25 (20 zeros, 5 non-zeros)

X: discrete X: continuous

f |M̂ | TP FP FCR |M̂ | TP FP FCR

0
SI

4.979 0.405 0.048 4.994 0.013 0.053
13.841 (0.211) (0.729) (0.080) 5.287 (0.089) (0.113) (0.098)

Na
(2.322) 5.000 8.841 0.874 (0.539) 5.000 0.287 0.491

(0.000) (2.322) (0.089) (0.000) (0.539) (0.229)

L
SI

4.938 0.834 0.053 4.780 0.391 0.054
20.380 (0.280) (0.935) (0.056) 11.844 (0.498) (0.673) (0.077)

Na
(1.906) 4.954 15.425 0.968 (2.121) 4.818 7.026 0.904

(0.214) (1.887) (0.038) (0.435) (2.085) (0.084)

nL
SI

4.963 0.647 0.052 4.974 0.101 0.054
17.238 (0.309) (1.028) (0.075) 7.050 (0.222) (0.359) (0.099)

Na
(2.244) 5.000 12.238 0.933 (1.361) 4.997 2.053 0.724

(0.000) (2.244) (0.059) (0.055) (1.359) (0.174)

TP: # of true positives, FP: # of false positives, FCR: false coverage rate
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Simulation study: Confidence interval (X: discrete)

Comparison between SI (selective inference) and Naive (non selective inference)
f : non-linear, µ: linear, e: logistic, n: 1000, p: 25 (20 zeros, 5 non-zeros)

0
1

2
3

Index of Selected Variables

1 2 3 4 5 11 15 18 21

SI
Naive
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Simulation study: Confidence interval (X: continuous)

Comparison between SI (selective inference) and Naive (non selective inference)
f : non-linear, µ: linear, e: logistic, n: 1000, p: 25 (20 zeros, 5 non-zeros)

0
1

2
3

Index of Selected Variables

1 2 3 4 5 14 17 22

SI
Naive
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Real data analysis (Benchmark lalonde dataset)

Causal effect is set as the difference in annual income in 1978 between the
group that took the U.S. job training program in 1976 and the group that did
not take it

By LASSO, 5 variables were selected among 10 variables, and 95%
confidence intervals by SI and Naive are compared below

SI does not regard re74 as significant since its confidence interval contains 0,
while Naive does; we do not know which is true, but anyway their results are
different

SI Naive

selected estimates lower upper estimates lower upper

age 49.353 −164.745 165.970 51.345 −66.302 168.991
educ 721.188 228.418 1196.124 862.309 390.500 1334.117
re74 0.240 −0.173 0.479 0.236 0.019 0.454
re75 0.275 −0.341 0.645 0.293 −0.040 0.625
u74 6459.088 3709.181 8956.314 6480.235 3997.591 8962.880
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Notes not mentioned

Estimation of variance σ2 of ϵ
(h)
i :

We only have to substitute a consistent estimator, but since the model
contains f(·) and we are trying to develop a method that avoids its
identification, its determination is more difficult than usual

Let us choose an appropriate sequence of real numbers {δn} that converges

to 0, and define N †
i = {l ̸= i : ∥Xl −Xi∥2 < δn, Tl = Ti} using

Ti = (T
(1)
i , . . . , T

(H)
i ); then we use

1

n

n∑
i=1

|N †
i |

1 + |N †
i |

(
Yi −

1

|N †
i |

∑
l∈N †

i

Yl

)2

Estimation of propensity scores:

We only have to use ê(h)(Xi) such that ê(h)(Xi)− e(h)(Xi) = OP(n
−1/2)

Note that in our unique conditioning, ê(h)(Xi) is non-random and thus does
not require special care to obtain Theorems 1 and 2

A special care, specifically changing some expressions of the asymptotic
order, is necessary to obtain Corollary, but anyway it still holds
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Summary and challenges

1 Conditioning on the assignment variables first (unusual in propensity score
analysis) and using higher-order asymptotics (unusual in selective inference),
we have developed asymptotically guaranteed post-selection inference

2 Numerical experiments showed that a method that ignores the quiet scandal
of statistics results in significant deviations from the preset coverage of the
confidence intervals, whereas our method maintains the coverage

3 Since this result cannot handle even GLM-based causal inference, we would
like to develop the results of Charkhi & Claeskens (’18 Biometrika) into a
causal inference version

4 The fact that the proposal is based on a formula that seems complicated
hinders its widespread use among users (while the calculation cost is not
high), so the development of package and manual is an urgent issue
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